Ship Maneuverability In an Era of Environmental Focus

15, June 2022. **by Capt. Goag, Sang-Min** Ulsan Pilot / Republic of Korea

CONTENTS

✓ Introduce Background

- ✓ Rules and Regulations of IMO
- Methods and Technologies for improving EEDI
- Comparison of Maneuverability
- ✓ Conclusion

Paris agreement on Climate change and IMO

The Paris Agreement dealing with greenhouse-gas-The long-term goal of the Agreement is to keep the <u>above pre-industrial levels;</u> and to limit the increase to 1.5 °C, since this would IMO has decided to reduce GHG emissions from the 2008.

- emissions mitigation was adopted on 12th Dec. 2015.
- increase in global average temperature to well below 2 °C
- substantially reduce the risks and effects of climate change.
- international shipping by <u>at least 50% by 2050 compared to</u>

IMO regulations for the prevention of air pollution

IMO's MARPOL entered into force in 2005. and entered into force on 1st Jan. 2013.

Annex VI Prevention of Air Pollution from ships was

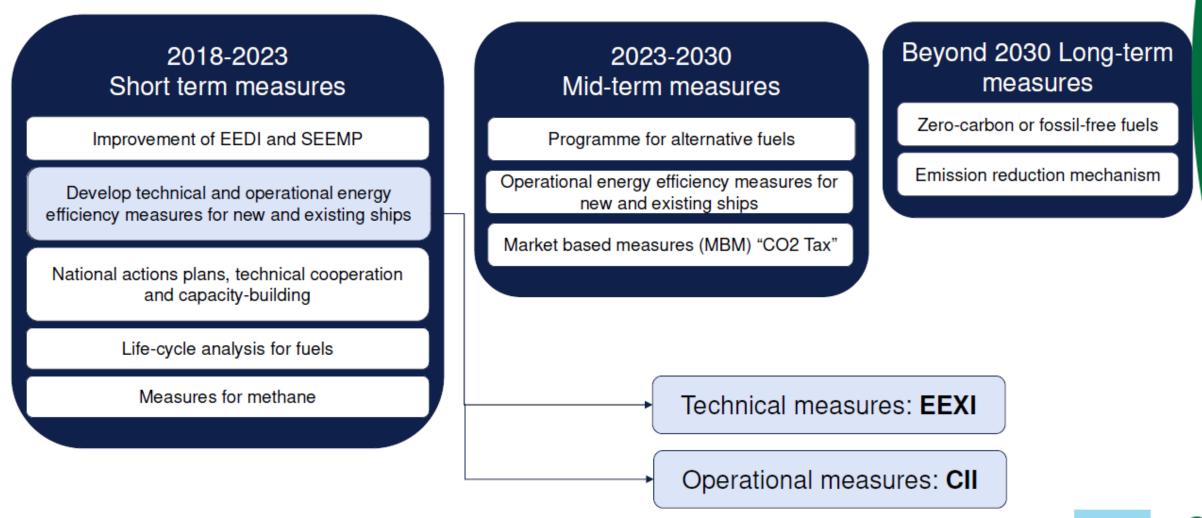
- Chapter III is to regulate the main air pollutants including SOx and NOx from ships' exhaust gas
- Chapter IV adopted <u>EEDI(Energy Efficiency Design Index)</u>
- and SEEMP(Ship Energy Efficiency Management Plan)
- for the reduction of GHG emissions from ships in 2011

MARPOL Annex VI Chapter III

Chapter III : Requirements for control of emissions from ships

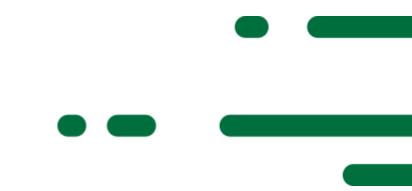
Regulation 12 : Emissions from Ozone depleting substances from refrigerating plants and fire fighting equipment Regulation 13 : Nitrogen Oxide(NOx) emissions from diesel engines Regulation 14 : Sulphur Oxide(SOx) emissions from ships Regulation 15 : Volatile Organic compounds emissions from cargo oil tanks Regulation 16 : Emissions from shipboard incinerators

MARPOL Annex VI **Chapter IV**


Chapter IV Regulations for Energy Efficiency for ships

Regulation 20 : Attained EEDI Regulation 21 : Required EEDI Regulation 22 : SEEMP Regulation 23 : Promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships

- Draft roadmap for developing a strategy : MEPC70(Oct. 2016)
- GHG initial strategy : MEPC72(Apr. 2018)
- GHG revised strategy : 2023


IMO GHG strategy

IMO Roadmap and Strategy for the reduction of GHG emission from ships

- IMO's Initial Strategy for GHG reduction identifies levels of ambition
- .1 carbon intensity of the ship to decline through implementation of further phases of the energy efficiency design index (EEDI) for new ships
- .2 carbon intensity of international shipping to decline to reduce CO2 by at least 40% by 2030, pursuing efforts towards 70% by 2050, compared to 2008
- .3 GHG emissions from international shipping to peak and decline to peak GHG emissions as soon as possible and reduce the total annual GHG emissions by at least 50% by 2050 compared to 2008

IMO Roadmap and Strategy for the reduction of GHG emission from ships

Sulphur Cap

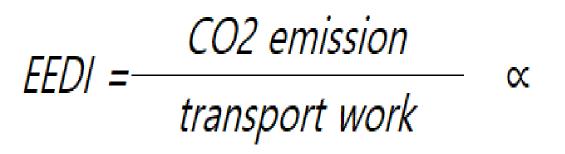
Sulphur Oxide(SOx) is controlled by the limitation of the Sulphur content in the bunker fuel. The mandate limits Sulphur content of Fuel Oil used onboard ships on a global basis to 0.5% from 1st Jan. 2020.

(scrubber) or use 0.5% Sulphur content fuel oil or LNG. ships changed the shape of superstructure.

- Shipowners have to either install exhaust gas cleaning unit
- The Installation of scrubber for either existing ships or new

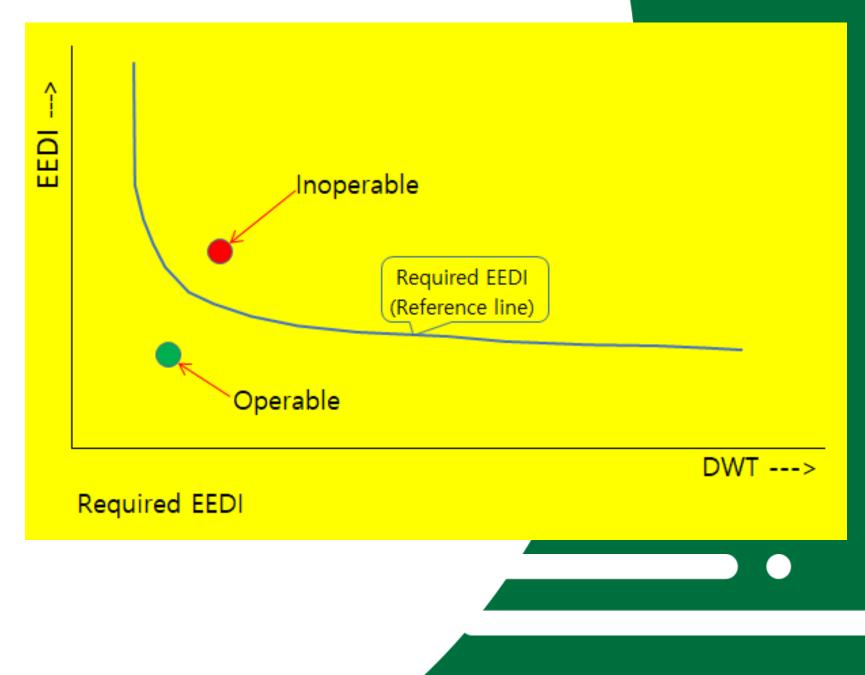
PHOTOS

Comparison of superstructure before and after retrofitting scrubber(VLCC C.Galaxy) This bigger superstructure will possibly affect the ships' maneuverability.


PHOTOS

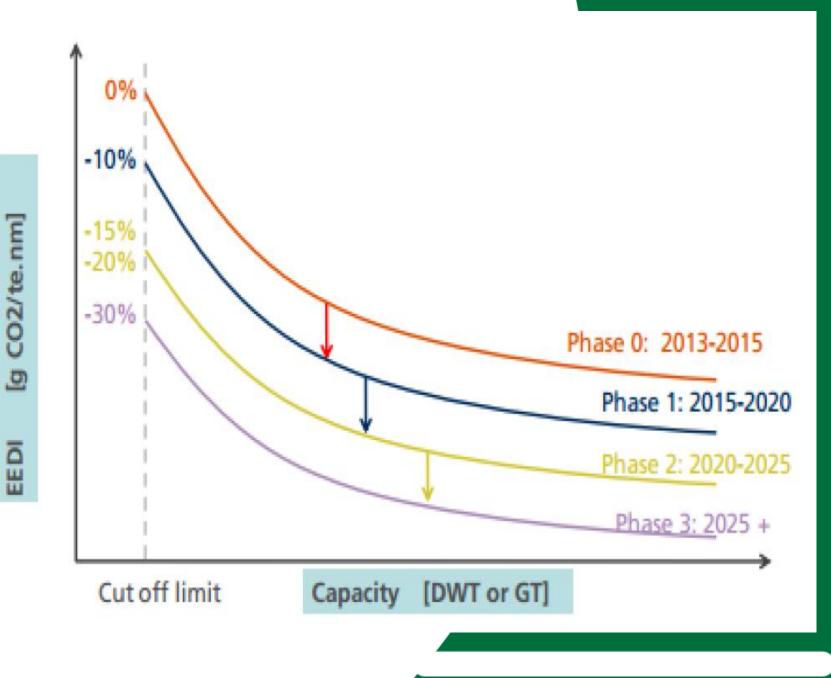
- New ship with scrubber (Aristfanis)
 - Existing ship without scrubber

EEDI (Energy Efficiency **Design Index**)


EEDI is the amount of CO2 in grams emitted by a ship per capacity-mile(ton-mile) of work. Ton-mile is the unit of work done by a ship. If a ship with dwt 20,000mt travels 2 NMs, it has done 40,000 ton-mile of work.

CO2 emission (in grams) Capacity(DWT) x distance travelled(in NM)

EEDI (Energy Efficiency **Design Index**)


the required EEDI(Reference line) type of the ship.

- Required EEDI is the maximum allowable value of EEDI required for the ship
- Attained EEDI is the actual value of EEDI attained for the ship
- Vessels with higher EEDI than the required are inoperable.

- As the name suggests, EEDI is the tool that is used
- during the design or construction stage of a vessel.
- Annex VI Chapter VI Reg. 21 provides the formula for
- The calculation of reference line value is complex.
- In brief the reference line value is the function of dwt and

EEDI (Energy Efficiency **Design Index**)

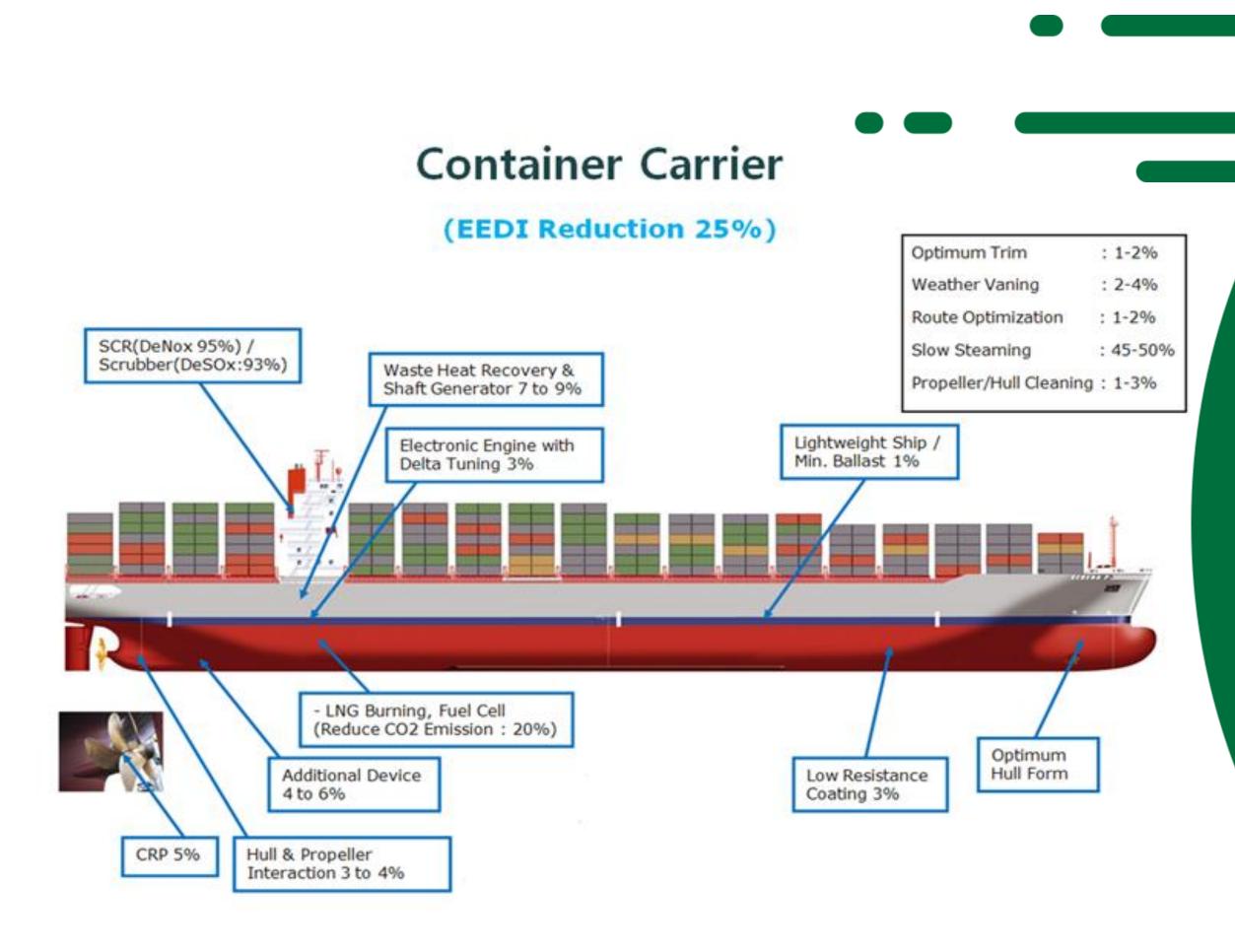
The reduction factor is used to tighten the EEDI regulations in phases over time by increasing its value so that the ship's engines are getting more energy efficient. Required EEDI = (1 - x/100) x Reference line value where x = Reduction factor

Implementation phases: The EEDI is Implemented in phases. Currently, it is in phase 2 that runs from year 2020 to 2024. Phase 1 was over and phase 3 is from year 2025 and onwards.

EEXI (Energy Efficiency Existing Ship Index)

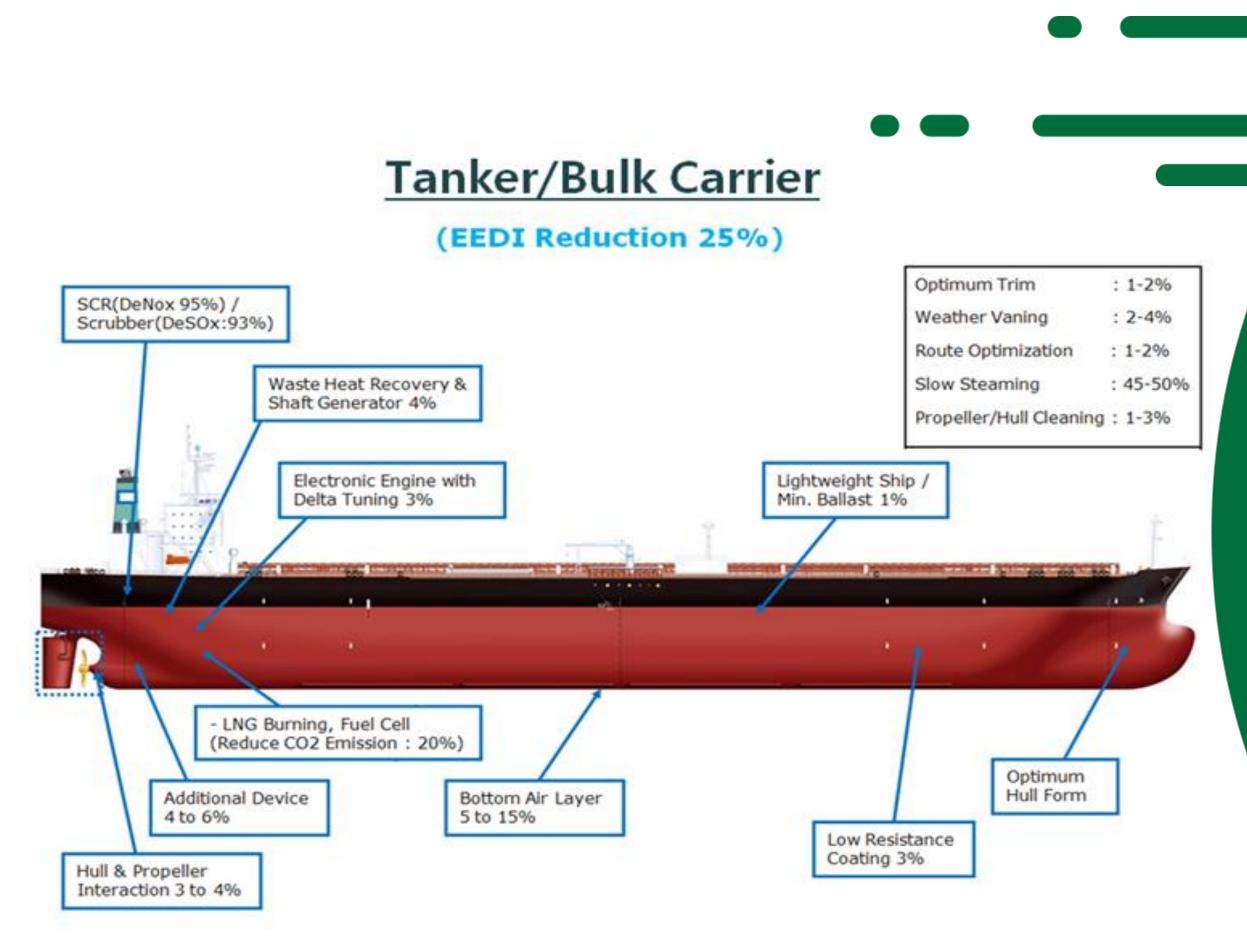
EEXI and CII were newly adopted at MEPC 76 in 2021 to regulate the energy efficiency and operational efficiency of existing ships according to IMO's GHG strategy short-term measures. EEXI is to expand EEDI which is applied to only new ships built after 2013 to existing ships. EEXI is calculated once in a lifetime and based on standard reference conditions. If a ship does not comply with required EEXI, the shipowner considers engine power limitation, shaft power limitation, energy saving devices, hull optimization or replacement with new ships.

CII (Carbon Intensity Indicator)

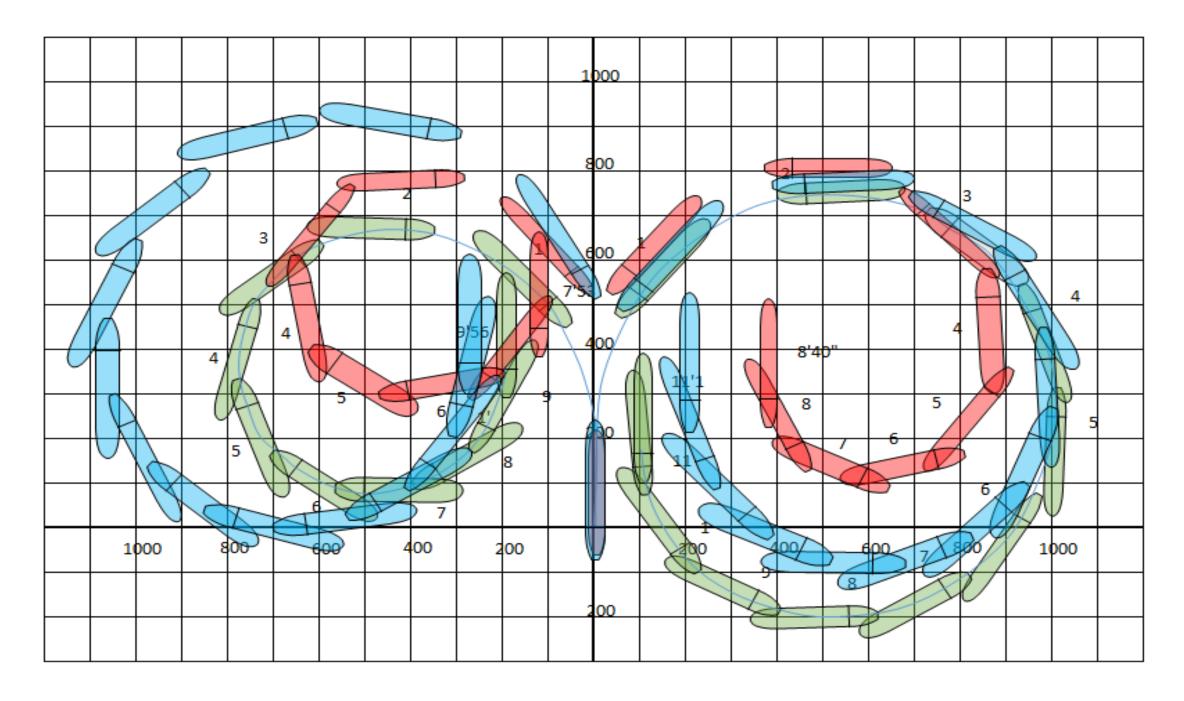

CII is an operational measure to reduce CO2. CII measures how efficiently a ship transports cargo or passengers and is based on fuel consumption reporting(DCS : Data Collecting) System) and calculated and given in grams of CO2 emitted per capacity-mile of work. CII will be calculated annually starting from 2023. The ship is then given an annual rating from A to E, whereby the rating thresholds will become Increasingly stringent towards 2030. C is Min. Compliance. If the annual CII rating is E or 3xD, shipowners need to develop and implement an approved corrective action plan as part of SEEMP.

Methods and Technologies for improving EEDI

various technologies are developed for the improvement of EEDI. They are minimal ballast water, optimum hull form, air lubrication system, low resistance hull coating, waste heat recovery and shaft generator, electronic engine with delta tuning, hull and propeller interaction and CRP. Possible EEDI reduction by technologies is thought to be about 25% (EEDI phase 2). Burning of eco-friendly fuels such as LNG, LPG and methanol can reduce about 10 to 20% additionally. Ships are getting bigger, their operating speed is slowing down, and eco-friendly energy fueled ships which generate less CO₂ have appeared.

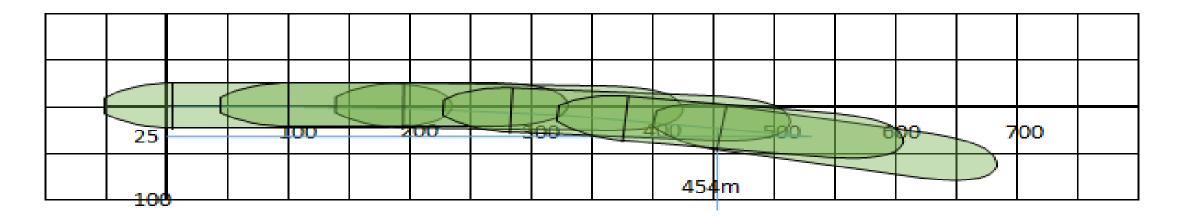


Methods and Technologies for improving EEDI


Methods and Technologies for improving EEDI

Turning ability

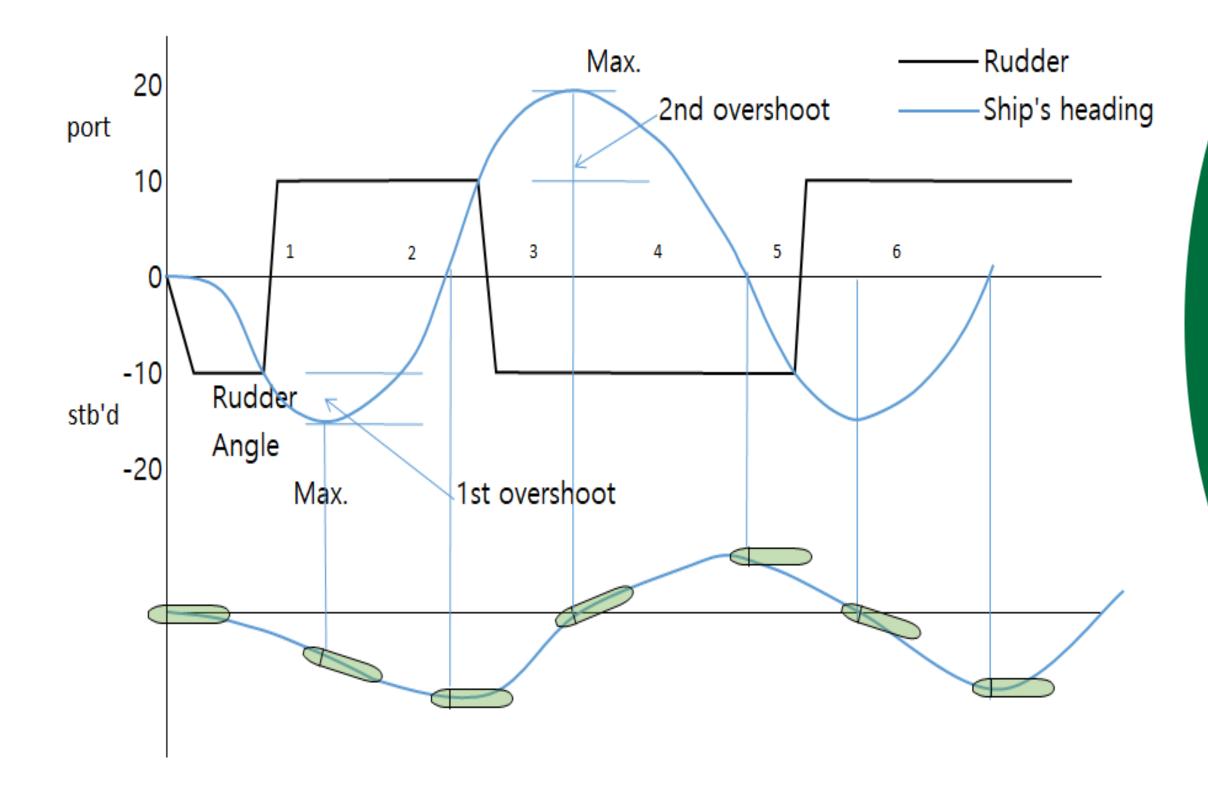
The advance should not exceed 4.5 ship lengths (L) and the tactical diameter should not exceed 5 ship lengths in the turning circle maneuver.


IMO's Standards for ship maneuverability

Initial turning ability

With the application of 10° rudder angle to port/ stbd, the ship should not have travelled more than 2.5 ship lengths by the time the heading has changed by 10° from the original heading.

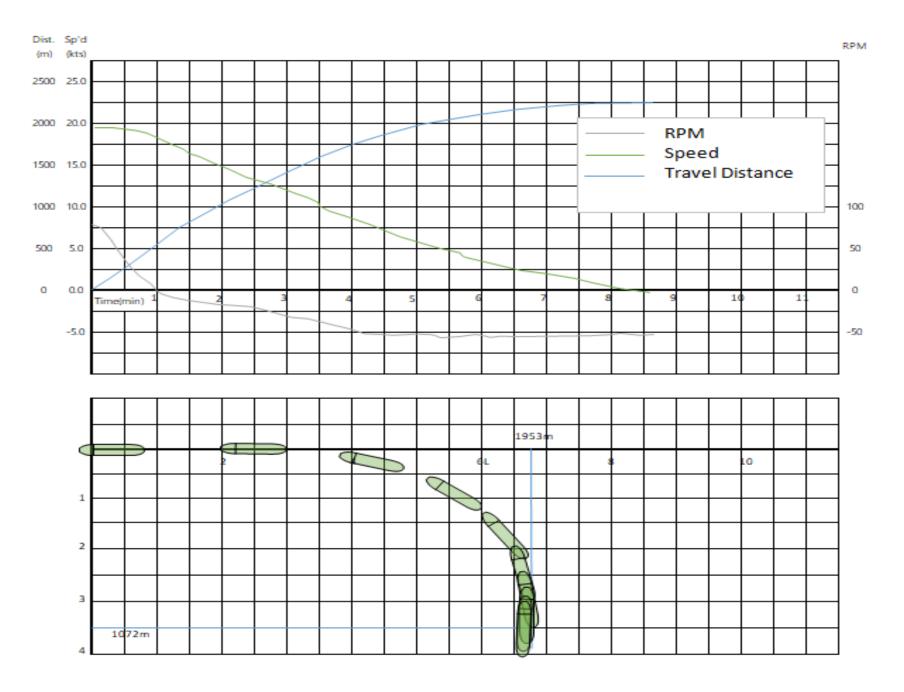
IMO's Standards for ship maneuverability


IMO's Standards for

ship maneuverability

Yaw-checking and course-keeping abilities 1 The value of the first overshoot angle in the 10°/10° zigzag test should not exceed : $.110^{\circ}$ if L/V is less than 10 s; $.220^{\circ}$ if L/V is 30 s or more; and .3(5 + 1/2(L/V)) degrees if L/V is 10 s or more but less than 30 s, where L and V are expressed in m and m/s, respectively. .2 The value of the second overshoot angle in the $10^{\circ}/10^{\circ}$ zig-zag test should not exceed : $.125^{\circ}$, if L/V is less than 10 s; $.240^{\circ}$, if L/V is 30 s or more; and $.3(17.5 + 0.75(L/V))^{\circ}$, if L/V is 10 s or more, but less than 30 s. .3 The value of the first overshoot angle in the $20^{\circ}/20^{\circ}$ zig-zag test should not exceed 25°.

Yaw-checking and course-keeping abilities


IMO's Standards for ship maneuverability

Stopping ability

The track reach in the full astern stopping test should not exceed 15 ship lengths. However, this value may be modified by the administration where ships of large displacement make this criterion impracticable, but should in no case exceed 20 ship lengths.

INO's Standards for ship maneuverability

Turning ability(Ballast)

Criteria Advance \leq 4.5Lpp

Tacitcal diameter ≤ 5.0Lpp

_												
	Type of ship	G/T	Dwt	LOA(m) /Lpp(m)	Breadth (m)	LOA/B ratio	Block- coefficien t	Adv. port	ance stb'd	Tactical o	diameter stb'd	EEDI, fuel year bu
	Feedermax (2,550Teu)	26,836	33,434	210/199	30	7.0	0.64	673m (3.38Lpp)	689m (3.46Lpp)	846m (4.25Lpp)	879m (4.42Lpp)	before E FO
	Feedermax (2,800Teu) KMTC SHENZHEN, B&W 26,740hp	28,827	39,829	223/211	30	7.4	No record	682m (3.23Lpp)	665m (3.15Lpp)	869m (4.12Lpp)	958m (4.54Lpp)	before E FO, 20 ⁻
	Feedermax (2,550Teu) KMTC SEOUL, B&W 23,360hp	27,997	37,200	196/185	32	6.1	No record	694m (3.75Lpp)	729m (3.94Lpp)	830m (4.49Lpp)	803m (4.34Lpp)	EEDI pha LSFO, 20
	Feeder (1,800Teu) PANCON BRIDGE B&W 16,030hp	18,040	22,426	172/163	27.4	6.3	No record	496m (3.03Lpp)	533m (3.26Lpp)	628m (3.84Lpp)	701m (4.29Lpp)	EEDI pha LSFO, 20
	ULCV(18,200Teu) Mærsk, Twin MAN, 39,800hp x 2	194,849	194,397	399/376	59	6.8	0.71	1,215m (3.23Lpp)	1,177m (3.13Lpp)	1,786m (4.75Lpp)	1,738m (4.62Lpp)	before E FO, 20
	ULCV(23,000Teu) HMM OSLO, 78,000hp	232,311	229,039	399/383	61.5	6.5	0.73	991m (2.59Lpp)	990m (2.59pp)	1,249m (3.26Lpp)	1,345m (3.51Lpp)	EEDI pha LSFO, 20

el and puilt

EEDI)

EEDI 013

nase | 2020

nase II 2022

EEDI, 011

nase II 2020

Comparison of ship Maneuverability (Container ships)

Initial turning ability

Criteria

travelled distance ≤ 2.5 Lpp

Type of ship	G/T	Dwt	LOA(m) /Lpp(m)	Breadth (m)	LOA/B ratio	Block- coefficient		distance Stb'd	tir	osed ne ec)	remark	EEDI, fuel and year built
Feedermax (2,550Teu)	26,836	33,434	210/199	30	7.0	0.64	no record	323m (1.62Lpp)	2	8	ballast 22.4kts	before EEDI FO
Feedermax (2,800Teu) KMTC SHENZHEN, B&W 26,740hp	28,827	39,829	223/211	30	7.4	no record	no record	327m (1.55Lpp)	2	9	ballast 21.9kts	before EEDI FO, 2013
Feedermax (2,550Teu) KMTC SEOUL, B&W 23,360hp	27,997	37,200	196/185	32	6.1	No record	309m (1.67Lpp)	no record	2	9	ballast 20.7kts	EEDI phase I LSFO, 2020
Feeder (1,800Teu) PANCON BRIDGE B&W 16,030hp	18,040	22,426	172/163	27.4	6.3	no record	no record	285m (1.75Lpp)	2	8	ballast 19.8kts	EEDI phase II LSFO, 2022
ULCV(18,200Teu) Mærsk, Twin MAN, 39,800hp x 2	194 <mark>,</mark> 849	194,397	399/376	59	6.8	0.71	518m (1.38Lpp)	500m (1.33Lpp)	46	44	ballast 21.9kts	before EEDI
ULCV(23,000Teu) HMM OSLO, 78,000hp	232,311	229,039	399/383	61.5	6.5	0.73	no record	576m (1.50Lpp)	5	0	ballast 22.4kts	EEDI phase II LSFO, 2020

Comparison of ship Maneuverability (Container ships)

26

Yaw checking and course keeping ability(overshoot angle)

Criteria

10°/10° zig-zag test

1st OA angel \leq 10°/20°, 2nd OA \leq 25°/40°

20°/20° zig-zag test

1st OA angel $\leq 25^{\circ}$

			-			-									
									/10°				/20°		
Type of ship	G/T	Dwt	LOA(m)	Breadth	LOA/B	Block- coefficien		ig-za ort	-	st b'd		ig-za ort	-	st o'd	EEDI, fu
			/Lpp	(m)	ratio	t	P	I			· ·				year k
							1st	2nd	1st	2nd	1st	2nd	1st	2nd	
Feedermax (2,550Teu)	26,836	33,434	210/199	30	7.0	0.64			3.5	4.3			8.4		before FC
Feedermax (2,800Teu) KMTC SHENZHEN, B&W 26,740hp	28,827	39,829	223/211	30	7.4	No record			5.8	5.6			9.2		before FO, 2
Feedermax (2,550Teu) KMTC SEOUL, B&W 23,360hp	27,997	37,200	196/185	32	6.1	No record	3.6	3.3			6.4	5.7			EEDI pl LSFO,
Feeder (1,800Teu) PANCON BRIDGE B&W 16,030hp	18,040	22,426	172/163	27.4	6.3	No record			3.5	3.5			7.7		EEDI ph LSFO,
ULCV(18,200Teu) Mærsk, Twin MAN, 39,800hp x 2	194,849	194,397	399/376	59	6.8	0.71	2.9	2.4	2.7	2.1	4.5	5.0	5.3	4.5	before
ULCV(23,000Teu) HMM OSLO, 78,000hp	232,311	229,039	399/383	61.5	6.5	0.73			2.7	2.9			5.7		EEDI ph LSFO,

ⁱuel and [.] built

re EEDI FO

e EEDI 2013

ohase I , 2020

hase II , 2022

e EEDI

hase II , 2020

Comparison of ship Maneuverability (Container ships)

Stopping abilit	у	Criteria	Trac				
			LOA(m)	Breadth	Crash stop astern	Ren	nark
Type of ship	G/T	Dwt	/Lpp	(m)	Full ahead> Full Astern	Condition design speed	EEDI, fuel a year buil
Feedermax (2,550Teu)	26,836	,836 33,434 210/199 30 2,702m (13.58Lpp)		2,702m (13.58Lpp)	Ballast 21.0kts	before EEI FO	
Feedermax (2,800Teu) KMTC SHENZHEN, B&W 26,740hp	28,827	39,829	223/211	30	2,546m (12.06Lpp)	Ballast 22.1kts	before EEI FO, 2013
Feedermax (2,550Teu) KMTC SEOUL, B&W 23,360hp	27,997	37,200	196/185	32	2,572m (13.90Lpp)	Ballast 19.6kts	EEDI phase LSFO, 202
Feeder (1,800Teu) PANCON BRIDGE B&W 16,030hp	18,040	22,426	172/163	27.4	2,431m (14.86Lpp)	Ballast 19.65kts	EEDI phase LSFO, 202
ULCV(18,200Teu) Mærsk, Twin MAN, 39,800hp x 2	194,849	194,397	399/376	59	3,726m (9.90Lpp)	Ballast 23.6kts	before EEI
ULCV(23,000Teu) HMM OSLO, 78,000hp	232,311	229,039	399/383	61.5	4,250m (11.10Lpp)	Ballast 21.3kts	EEDI phase LSFO, 202

and lt EDI EDI 3 20 e II 22

EDI

se II 120

Comparison of ship Maneuverability (Container ships)

Turning ability(Loaded)

Criteria Advance \leq 4.5Lpp

Tacitcal diameter ≤ 5.0Lpp

Type of ship	G/T	Dwt	LOA(m)	Breadth	LOA/B	Block- coefficien		ance	Tactical	diameter	EEDI, fuel and
Type of ship	0/1		/Lpp(m)	(m)	ratio	t	port	stb'd	port	stb'd	year built
VLCC 316K, Sulzer 43,030hp	163,066	316,373	333/319	60	5.6	0.83	856m (2.68Lpp)	904m (2.83Lpp)	945m (2.96Lpp)	1,029m (3.22Lpp)	before EEDI, FO, 2011
VLCC 293K H ELEPHANT B&W 39,200hp	161,969	293,384	333/320	60	5.6	<mark>0.8</mark> 1	979m (3.06Lpp)	1,021m (3.19Lpp)	825m (2.58Lpp)	888m (2.78Lpp)	before EEDI, FO, 2012
VLCC 300K NAUTILUS B&W 32,700hp	154,163	299,392	333/322	60	5.6	0.80	964m (2.99Lpp)	959m (2.98Lpp)	846m (2.63Lpp)	1,128m (3.50Lpp)	EEDI phase I FO, 2016
46K PC FINNANGER B&W 12,700hp	29,807	46,251	183/174	32.2	5.7	No record	534m (3.07Lpp)	589m (3.39Lpp)	470m (2.70Lpp)	526m (3.02Lpp)	before EEDI, FO, 2009
50K PC BOXER B&W 11,140hp	29,447	49,852	183/175	32.2	5.7	No record	400m (2.29pp)	416m (2.38Lpp)	470m (2.69Lpp)	469m (2.68Lpp)	EEDI phase I LSFO, 2019
50K PC MARI INNOVATOR, B&W 10,160hp	30,873	49,999	186/177	32.2	5.8	0.79	364m (2.06Lpp)	397m (2.24Lpp)	443m (2.50Lpp)	466m (2.63Lpp)	EEDI phase II LSFO/Methanol 2021
50K PC CLEAROCEAN, B&W 9,620hp	29,530	49,999	183/175	32.2	5.7	No record	395m (2.56Lpp)	405m (2.31Lpp)	447m (2.55Lpp)	445m (2.54Lpp)	EEDI phase II LSFO, 2021

Comparison of ship Maneuverability (Tankers)

Initial turning ability

Criteria

travelled distance ≤ 2.5 Lpp

Type of ship	G/T	Dwt	LOA(m) /Lpp(m)	Breadth (m)	LOA/B ratio	Block- coefficient			elapsed time (sec)	remark	EEDI, fuel and year built
VLCC 316K, Sulzer 43,030hp	163,066	316,373	333/319	60	5.6	0.83	no record	525m (1.65Lpp)	68	laden 15.1kts	before EEDI, FO, 2011
VLCC 293K H ELEPHANT B&W 39,200hp	161,969	293,384	333/320	60	5.6	0.81	no record	542m (1.69Lpp)	70	laden 15.1kts	before EEDI, FO, 2012
VLCC 300K NAUTILUS B&W 32,700hp	154,163	299,392	333/322	60	5.6	0.80	575m (1.79Lpp)	no record	75	laden 14.9kts	EEDI phase I FO, 2016
46K PC FINNANGER B&W 12,700hp	29,807	46,251	183/174	32.2	5.7	No record	315m (1.81Lpp)	no record	40	laden 15.3kts	before EEDI, FO, 2009
50K PC BOXER B&W 11,140hp	29,447	49,852	183/175	32.2	5.7	No record	322m (1.84Lpp)	238m (1.36Lpp)	45/34	laden 13.8kts	EEDI phase I LSFO, 2019
50K PC MARI INNOVATOR, B&W 10,160hp	30,873	49,999	186/177	32.2	5.8	0.79	no record	252m (1.42Lpp)	35	laden 14.0kts	EEDI phase II LSFO/Methanol 2021
50K PC CLEAROCEAN, B&W 9,620hp	29,530	49,999	183/175	32.2	5.7	No record	no record	319 (1.82Lpp)	43	laden 14.4kts	EEDI phase II LSFO, 2021

Comparison of ship Maneuverability (Tankers)

Yaw checking and course keeping ability(overshoot angle)

Criteria

 $10^{\circ}/10^{\circ}$ zig-zag test 1st OA angel $\leq 10^{\circ}/20^{\circ}$, 2nd OA $\leq 25^{\circ}/40^{\circ}$

20°/20° zig-zag test

1st OA angel $\leq 25^{\circ}$

					Deserved			z	10°, ig-za	/10° ig te	st	z	20°, ig-za	/20° Ig te	st	
	Type of ship	G/T	Dwt	/Lpp	Breadth (m)	LOA/B ratio	Block- coefficient		ort	<u> </u>	o'd		ort	ř –	o'd	EEDI, fue year b
								1st	2nd	1st	2nd	1st	2nd	1st	2nd	
	VLCC 316K, Sulzer 43,030hp	163,066	316,373	333/319	60	5.6	0.83			18.2	39.2			19.1		before I FO, 20
	VLCC 293K H ELEPHANT B&W 39,200hp	161,969	293,384	333/320	60	5.6	0.81	12.2	26.7			18.2	18.5			before I FO, 20
	VLCC 300K NAUTILUS B&W 32,700hp	154,163	299,392	333/322	60	5.6	No record			9.3	38.2			14.0		EEDI ph FO, 20
	46K PC FINNANGER B&W 12,700hp	29,807	46,251	183/174	32.2	5.7	No record	8.7	20.4			19.9				before I FO, 20
	50K PC BOXER B&W 11,140hp	29,447	49,852	183/175	32.2	5.7	No record	13.7	29.7	17.3	32.0	23.0		20.7		EEDI ph LSFO, 2
I	50K PC MARI INNOVATOR, B&W 10,160hp	30,873	49,999	186/177	32.2	5.8	0.79			9.7	22.5			15.7		EEDI ph LSFO/Me 202
	50K PC CLEAROCEAN, B&W 9,620hp	29,530	49,999	183/175	32.2	5.7	No record			14.1	27.6			19.5		EEDI ph LSFO, 2

uel and built

e EEDI, 2011

e EEDI, 2012

hase l 2016

e EEDI, 2009

> hase I 2019

hase II lethanol 21

hase II 2021

Comparison of ship Maneuverability (Tankers)

Stopping abilit	у	Criteria	Trac	15Lpp			
_	0.7	_	LOA(m)	Breadth	Crash stop astern	Ren	nark
Type of ship	G/T	Dwt	/Lpp	(m)	Full ahead> Full Astern	Condition design speed	EEDI, fuel and year built
VLCC 316K, Sulzer 43,030hp	163,066	316,373	333/319 60 4,513m (14.15Lpp)		4,513m (14.15Lpp)	Laden 15.0kts	before EEDI, FO, 2011
VLCC 293K H ELEPHANT B&W 39,200hp	161,969	293,384	333/320	60	60 5,637m Laden (17.6Lpp) 15.7kts		before EEDI, FO, 2012
VLCC 300K NAUTILUS B&W 32,700hp	154,163	299,392	333/322	60	4,600m (14.3Lpp)	Laden 14.8kts	EEDI phase I FO, 2016
46K PC FINNANGER B&W 12,700hp	29,807	46,251	183/174	32.2	1,826m (10.5Lpp)	Laden 15.0kts	before EEDI, FO, 2009
50K PC BOXER B&W 11,140hp	29,447	49,852	183/175	32.2	2,006m (11.5Lpp)	Laden 13.7kts	EEDI phase I LSFO, 2019
50K PC MARI INNOVATOR, B&W 10,160hp	30,873	49,999	186/177	32.2	2,297m (13.0Lpp)	Laden 14.0kts	EEDI phase II LSFO/Methanol 2021
50K PC CLEAROCEAN, B&W 9,620hp	29,530	49,999	183/175	32.2	1,851m (10.57Lpp)	Loaded 14.30kts	EEDI phase II LSFO, 2021

Comparison of ship Maneuverability (Tankers)

32

Turning circle(Ballast)

Criteria Advance ≤ 4.5Lpp

Tacitcal diameter ≤ 5.0Lpp

Type of ship	G/T	Dwt LOA(m) Breadth LOA/B Block- coefficie	Block- coefficien	Adv	ance	Tactical	diameter	EEDI, fuel			
.)			/Lpp(m)	(m)	ratio	t	port	stb'd	port	stb'd	year bu
155K GTT Mark III							757m	791m	636m	821m	before E
DFDE 54,250hp single screw	102,064	84,303	288/275	44.2	6.5	0.76	(2.75Lpp)	(2.88Lpp)		(2.99Lpp)	FO/LNG,
165K SPB DFDE											
33,257hp	122,142	88,700	300/292	48.9	6.1	0.70	811m	767m	853m	866m	EEDI pha
single screw							(2,70Lpp)	(2.56Lpp)	(2.84Lpp)	(2.89Lpp)	FO/LNG,
177K Moss DFDE							20	943m	no	1182m	EEDI pha
33,070hp	135,951	82,254	300/286	48.9	6.1	0.70	no record	(3.30Lpp)	record	(4.13Lpp)	FO/LNG,
twin screw							record	(5.50Lpp)	record	(4.13cpp)	TO/LING,
174K GT96 ME-GI						no	920m	778m	897m	883m	EEDI pha
32,319hp	115,541	98,344	296/284	46.4	6.4	record	(3.24Lpp)	(2.74Lpp)		(3.11Lpp)	FO/LNG,
twin screw							(9.2.1566)		(0.10200)		10,210,
180K Mark III XDF						no	972m	1221m	888m	1102m	EEDI pha
34,730hp	122,166	97,494	299/294	47.8	6.3	record	(3.31Lpp)	(4.16Lpp)	(3.03Lpp)		· · · ·
twin screw							(0.0.1-66)	((0.00-00)	(0	,,
40K LPG						No	492m	513m	650m	658m	EEDI pha
KAUPANG B&W	26,614	29,649	180/174	28.7	6.3	record	(2.83Lpp)		(3.75Lpp)	(3.79Lpp)	LSFO/LI
11,270hp							(,			2022

iel and built

EEDI , 2007

nase I , 2019

nase I , 2019

nase I , 2017

nase I , 2019

nase II LPG, 2

Initial turning ability

travelled distance ≤ 2.5 Lpp

Type of ship	G/T	Dwt	LOA(m) /Lpp(m)	Breadth (m)	LOA/B ratio	Block- coefficient	-	distance Stb'd	- tin	osed me ec)	remark	EEDI, fuel and year built
155K GTT Mark III DFDE 54,250hp single screw	102,064	84,303	288/275	44.2	6.5	0.76	374m (1.36Lpp)	479m (1.74Lpp)	36	47	ballast 19.8kts	before EEDI FO/LNG, 2007
165K SPB DFDE 33,257hp single screw	122,142	88,700	300/292	48.9	6.1	0.70	460m (1.58Lpp)	482m (1.65Lpp)	42	44	ballast 21.3kts	EEDI phase I FO/LNG, 2019
177K Moss DFDE 33,070hp twin screw	135,951	82,254	300/286	48.9	6.1	0.70	462m (1.61L)	453m (1.58L)	45	44	ballast 20.2kts/ 19.9kts	EEDI phase I FO/LNG, 2019
174K GT96 ME-GI 32,319hp twin screw	115,541	98,344	296/284	46.4	6.4	no record	419m (1.48Lpp)	no record	43	no rec	ballast 18.9kts	EEDI phase I FO/LNG, 2017
180K Mark III XDF 34,730hp twin screw	122,166	97,494	299/294	47.8	6.3	no record	no record	421m (1.41Lpp)	no rec	44	ballast 18.6kts	EEDI phase I FO/LNG, 2019
40K LPG KAUPANG B&W 11,270hp	26,614	29,649	180/174	28.7	6.3	no record	350 (2.01Lpp)	no record	4	2	ballast 16.2kts	EEDI phase II LSFO/LPG, 2022

bu	ilt	
	EDI 2007	

Yaw checking and course keeping ability(overshoot angle)

Criteria $10^{\circ}/10^{\circ}$ zig-zag test1st OA angel $\leq 10^{\circ}/20^{\circ}$, 2nd OA $\leq 25^{\circ}/40^{\circ}$ $20^{\circ}/20^{\circ}$ zig-zag test1st OA angel $\leq 25^{\circ}$

						<u> </u>									
								10°,	/10°			20°,	/20°		
	ст	Dut	LOA(m)	Breadth	LOA/B	Block-	Z	ig-za	g te	st	Z	ig-za	g te	st	EEDI, fue
Type of ship	G/T	Dwt	/Lpp	(m)	ratio	coefficient	po	ort	st	o'd	po	ort	st	o'd	year b
							1st	2nd	1st	2nd	1st	2nd	1st	2nd	
155K GTT Mark III DFDE 54,250hp single screw	102,064	84,303	288/275	44.2	6.5	0.76	12.6	9.7	5.0	16.4	16.2		12.1		before I FO/LNG,
165K SPB DFDE 33,257hp single screw	122,142	88,700	300/292	48.9	6.1	0.70	4.6	5.0	3.8	6.4	11.3		9.6		EEDI ph FO/LNG,
177K Moss DFDE 33,070hp twin screw	135,951	82,254	300/286	48.9	6.1	0.70	3.4	3.2	3.8	3.7	6.1		6.3		EEDI ph FO/LNG,
174K GT96 ME-GI 32,319hp twin screw	115,541	98,344	296/284	46.4	6.4	no record	12.4	14.5			16.3				EEDI ph FO/LNG,
180K Mark III XDF 34,730hp twin screw	122,166	97,494	299/294	47.8	6.3	no record			11.3	14.6			12.4		EEDI ph FO/LNG,
40K LPG KAUPANG B&W 11,270hp	26,614	29,649	180/174	28.7	6.3	No record			1.7	3.7			11.1		EEDI pha LSFO/L 2022

uel and built

e EEDI G, 2007

hase I 5, 2019

hase I 5, 2019

hase I 5, 2017

hase I 5, 2019

hase II /LPG, 22

Stopping ability	Criteria	Track reach ≤ 15Lpp				
		LOA(m)/ Lpp	Breadth (m)	Crash stop astern	Remark	
Type of ship G/T	Dwt			Full ahead> Full Astern	Condition design speed	EEDI, fuel a year built
155K GTT Mark III DFDE 54,250hp 102,06 single screw	4 84,303	288/275	44.2	3,364m (12.23Lpp)	Ballast 19.0kts	before EEI FO/LNG, 20
165K SPB DFDE 33,257hp 122,14 single screw	2 88,700	300/292	48.9	3,033m (10.6Lpp)	Ballast 21.0kts	EEDI phase FO/LNG, 20
177K Moss DFDE 33,070hp 135,95 twin screw	1 82,254	300/286	48.9	3,519m (12.3Lpp)	Ballast 20.2kts	EEDI phase FO/LNG, 20
174K GT96 ME-GI 32,319hp 115,54 twin screw	1 98,344	296/284	46.4	3,502m (12.3Lpp)	Ballast 16.1kts	EEDI phase FO/LNG, 20
180K Mark III XDF 34,730hp 122,16 twin screw	6 97,494	299/294	47.8	4,194m (14.3Lpp)	Ballast 18.6kts	EEDI phase FO/LNG, 20
40K LPG KAUPANG B&W 26,61 11,270hp	4 29,649	180/174	28.7	2,536m (14.61Lpp)	Ballast 16.11kts	EEDI phase LSFO/LPO 2022

and lt EDI 2007 se i 019 e 019 019 se II G,

Conclusion

The world is changing rapidly and the paradigm for the environment is also changing. As all of you know, many diesel cars have been replaced by electric cars or hydrogen-fueled cars recently. The road map for the reduction of GHG emissions from international shipping has been established and is being implemented under the command of IMO. We are at the center of these changes. Sulfur cap and EEDI changed the shape of ships' superstructure and are accelerating changes in the fuels of ships' engines. I planned this presentation under the subject "Ship maneuverability in an era of environmental focus" and tried to find and explain the impact on the ships' maneuverability numerically using "IMO's standards for Ship maneuverability".

Conclusion

and EEDI-applied ships and fuel. among them and there was no vessel out of IMO Standards. According to the Information from shipbuilders and engine getting bigger unless the hull shape is changed.

- I compared ships' maneuverability by classifying them into non-EEDI
- However, I could not find any significant differences in maneuverability
- manufacturers, if the engine output is the same, there is not much
- difference in the ship's maneuverability between any type of fuel.
- At the 2014 Panama Congress, when I presented "The Maneuverability
- of Very Large and Ultra Large Container Ship", I concluded that the
- maneuvering characteristics remain unchanged, though ships are

Conclusion

The ships' maneuverabiltiy remains unchanged in an era of reduced, it will inevitably affect the stopping ability. We need to pay special attention to the engine power. that IMPA do more research on this topic.

- Now, I would like to say cautiously, "My conclusion is the same.
- environmental focus. However, as the engine power is generally
- Since decarbonization and fuel transitions are on going, I will continue
- to keep an eye on ships' maneuverability and would like to suggest

Any Questions?

Or Contact to Capt. Goag, jemis904@kmpilot.or.kr

25th PMPA CONGRESS CANCÚN 2022

Thank You, Gracias!

Reference

 IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation Module 2 – Ship Energy Efficiency Regulations and Related Guidelines
Hyundai Mipo Dockyard - Global warming and Green Ship Development
EEXI and CII calculations – DNV's way forward DNV Webinar 7 July 2021

Reference

