

Approach Channels – A Guide for Design

Progress of MarCom Working Group 49/121 Dr Mark McBride

HR Wallingford Ltd

Brief history

- 1972 Working Group 2 of the PIANC International Oil Tankers Commission (IOTC)
- 1980 Working Group 4 of PIANC International Commission for the Reception of Large Ships (ICORELS)
- 1985 Working Group of PTC II "Underkeel clearance for large ships in maritime fairways with hard bottom"
- 1995 Working Group 30, a joint PIANC-IAPH group in cooperation with IMPA and IALA, published preliminary guidelines, followed by:
- 1997 "Approach Channels A guide for design"

Approach Channels – A Guide for Design

0		Table 5.2 - Additional Widths for Straight Channel Sections				
SOCIATION OF ST	ALION	WIDTH Wi	Vessel Speed	Outer Channel exposed to open water	Inner Channel protected water	
JUL DU	2	(a) Vessel speed (knots)				
		- fast > 12		0.1 B	0.1 B	
		- moderate > 8 - 12		0.0	0.0	
		(b) Prevailing cross wind (knots)		0,0	0.0	
NI-SHOOM		- mild ≤ 15 (≤ Beaufort 4)	all	0.0	0.0	
Π	NI-SBO	- moderate > 15 - 33	fast	0.3 B		
0		(> liseautort 4 - Beautort 7)	nod	0.4 8	0.4 B	
		- severe > 33 - 48	fast	0.6 B	V.3 D	
	and the second start have been at the second start in the second start in the second start is the second start in the second start is the second s	(> Beaufort 7 - Beaufort 9)	mod	0.8 B	0.8 B	
	A second s		slow	1.0 8	1.0 B	
		(c) Prevailing cross current (knots) - neeligible < 0.2	all	0.0	0.0	
	and the second	- low 0.2 - 0.5	fast	0.1 B	0.0	
APPROACH CH			nod	0.2 B	0.1 B	
mintorun un		$-$ moderate $\ge 0.5 - 1.5$	slow	0.3 B	0.2 B	
	A second s	- successingly - solid - 1 by	mod	0.7 B	0.5 B	
Dualizzinana C-			slow	1.0 B	0.8 B	
r renminary Gu	Approach Uhai	- strong > 1.5 - 2.0	fast	0.7 B	-	
	T T		slow	1.3 B	-	
	A Cuido for D	(d) Prevailing longitudinal current (knots)				
	A Guide for D	- kow s 1.5	all	0.0	0.0	
		 moderate > 1.5 - 3 	last mod	0.0		
			stow	0.2 B	0.2 B	
		- strong > 3	fast	0.1 B	-	
			anod	0.2 B	0.2 B	
		(c) Significant wave beight H, and		0.4 (F	0.9 5	
A A A A A A A A A A A A A A A A A A A		length λ (m)				
		-H _y 's Fandλis L	all	0.0	0.0	
			fast	2.0 B		
I SETTI		$-3 \ge \mathbb{N}_s \ge 1$ and $\lambda \simeq 1$.	nod	- 1.0 B		
	Tel contraction of the test international sector in the sector of the se		slow	~ 9.5 B		
	State of the state		fast	⇒ 3.0 B		
		$-H_s \ge 3$ and $\lambda \ge 1$.	arod	~ 2.2 B		
		(D. Alda to Mariantian	stow	∝ 1.5 B		
		- excellent with shore traffic control		0.0	0.0	
		- good		0.1 B	0.1 B	
		 moderate with infrequent poor visibility moderate with frequent poor visibility 		0.2 B	0.2 B	
		(a) Bottom surface		2 V.3 D	2 U.S B	
		- if depth ≈ 1.5T		0.0	0.0	
		- if depth < 1.5T then		010	A 1 B	
		 smooth and soft smooth or sloping and hard 		0.1 B	0.18	
		 rough and hard 		0.2 B	0.2 B	
		(h) Depth of waterway				
		- al.5T - 15T - 125T		0.0	al.5T 0.0	
		- <1.25T		0.2 B	<1.151 0.2.8 <1.15T 0.4.8	
		(i) Cargo hazard level	The should also have a set of			
		- low		0.0	0.0	
		- meann - high		- U.5 B	~ 0.4 B ~ 0.8 B	
		101		1192.50	- VIV V	

© HR Wallingford 2011

Replace existing guidelines, so title is:

- "Harbour Approach Channels Design Guidelines"
- Brief:
 - Review, update and, where appropriate, expand on the design recommendations in the WG30 1997 report
 - Consider recent developments in simulation and other design tools
 - Consider sizes and handling characteristics of new generation vessels

Page 5

Membership

Comprises:

- Maritime engineers
- Naval architects
- Scientists
- Port engineers
- Maritime pilots (IMPA)
- IAPH representatives
- IALA cooperation
- 3 members from WG30

20 members from:

- Australia
- Belgium
- Canada
- Finland
- France
- Germany
- Japan
- The Netherlands
- South Africa
- Spain
- UK
- USA

Working Group 49

© HR Wallingford 201

Received support from:

- International Association of Ports and Harbours (IAPH)
- International Maritime Pilots Association (IMPA)
- International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA)
- Institute for Water Resources, USA
- US Naval Academy
- USACE
- Coastal Development Institute of Technology (Japan)
- Akishima Laboratories (Mitsui Zosen) (Japan)
- HR Wallingford, UK

Working Group 49

© HR Wallingford 2011

Asked to prioritise:

- Vertical motions of ships in channels
- Vertical clearances under bridges, overhead cables, etc. (air draught)
- New and future generation ship characteristics
- Acceptable levels of risk and clearance margins
- Methods for assessing operating limits
- Use of ship navigation simulation in channel design
- Manoeuvring limits in adverse conditions, e.g. consider tug effectiveness at speed and in waves
- Restrictions on pilot boarding, tug attachment/ detachment

Work undertaken:

- Examined requirements, scope and resources
- Reviewed WG30 1997 report
- Have adopted a modified 1997 channel width design method, despite considering several other possible methods (eg. the design standards of Spain and Japan)
- Identified new structure for document, keeping empirical methods for conceptual design and recommended methodologies for detailed design
- Three sub-groups formed to focus on the specific areas (Vertical, Horizontal and "General/Everything else")
- 14 meetings held

Working Group 49

New report structure:

- 1997 guidelines had main sections on "Concept design" and "Detailed design"
- New guidelines separate vertical (Chapter 2) and horizontal (Chapter 3) aspects
- Conceptual and detailed design issues within each main chapter
- Design ship dimensions updated for larger and new generation vessel sizes (Appendix C)
- Recognise that designer needs to think through process, rather than having a "black box" solution

Guidance provides:

Conceptual design empirical methods:

- Width Sum of ship beams, modified WG30 method
- Depth New initial estimate method and "intermediate" calculation methods included
- Guidance on detailed design methods
- Emphasise results of conceptual design empirical methods are not a final design
- <u>Expect</u> conceptual design to be conservative
- Optimise using detailed design methods described in the guidelines

Vertical dimensions

• Re-introduce modified 1985 depth components:

Squat – What method to use?

- Barrass2 (1981)
- Barrass3 (2004)
- Barrass4 (2004)
- Eryuzlu and Hausser (1978)
- Eryuzlu et al. (1994)
- Hooft (1974)
- Huuska/Guliev (1976)
- ICORELS (1980)
- Japan/Yoshimura (1986)
- MARSIM (2000)
- Millward (1990)
- Millward (1992)
- Norrbin (1986)
- Romisch (1989)
- SLS Trial Formula (2002)
- Tothill
- Tuck (1966)
- VLCC

Squat – Appendix D

Appropriateness of methods

Code ID	Con	figura	ration Constraint								
Code ID	U	R	С	F _{nh}	C _B	S	B/T	h/T	h _™ /h	L/B	L/T
Tuck (1966)	Y	Y	Y	F_{nh}^{2+}							
Huuska/Guliev	V	\sim	V	< 0.7	0.6 -		2.19	1.1 -	0.22 -	5.5 -	16.1 -
(1976)	T	T	ľ	≤ 0.7	0.8		- 3.5	2.0	0.81	8.5	20.2
ICORELS	V	$\langle \times \rangle$		≤ 0.7	0.6 -		2.19	1.1 -	0.22 -	5.5 -	16.1 -
(1980)	I	(1)		V _{Cr}	0.8		- 3.5	2.0	0.81	8.5	20.2
Barrass3	v	V	V	1P	0.5 -	0.1 -		1.1 -			
(2004)	I	I	I	V	0.85	0.25		1.4			
Eryuzlu2	V	<		□ ²⁺	. 0.0		2.4 -	1.1 -		6.7-	
(1994)	I	I		F _{nh}	≥ 0.0		2.9	2.5		6.8	
Römisch	v	V	V	V ²⁺ ,			2.6	1.19-		97	22.0
(1989)	I	I	I	V _{Cr}				2.25		0.7	22.9
Yoshimura	V	$\mathbf{\vee}$	V	V ²	0.55		2.5 -	- 1 2		3.7 –	
(1986)	ſ	ſ	ſ	V	- 0.8		5.5	≥ 1.2		6.0	

Notes:

- 1. Y=Yes
- 2. Only h/T enforced for Römisch formula.
- 3. Only Barrass3 and Römisch predict stern squat S_s explicitly. Others predict maximum squat, whether at bow or stern.
- 4. V_{2}^{2} : Squat a function of square of velocity
- 5. V^{2+} : Squat a function of more than square of velocity
- 6. F_{nh}^{2+} : Squat a function of more than square of F_{nh} .
- 7. V_{Cr} : Squat a function of critical speed V_{Cr} .
- 8. ICORELS sometimes used in Restricted channel although originally developed for Unrestricted.

Page 15

Channel design

Horizontal aspects – Take into account:

- Width in straight sections
- Width through bends
- Curvature of bend
- Channel / manoeuvring area layout
- Ship length Inherent in considering ship beam
- Shallow water
- Space for tugs
- 2-way channels

Horizontal aspects

- Assessed other methods, in particular, design standards of Spain and Japan
- Kept conceptual method similar to WG30 1997 method, but modified
- Still need site specific / design ship specific parameters
- Detailed design considers semiprobabilistic and probabilistic methods
 - Range of existing channels used for comparison

Width	Vessel	Outer Channel exposed	Inner Cl	hannel			
Wi	Speed	to open water	protected	l water			
(a) vessel speed (knots, with respect to the water)		0.1	D				
- 1051 - 12 - moderate > 8 - 12		0.0					
- moderate > 8 - 12		0.0					
(b) Provailing areas wind (knots)	2	0.0					
$-$ mild ≤ 15 (\leq Beaufort 4)	fast	0.1 B 0.2 B					
- mid = 15 (= Beadien 4)	mod						
	slow	0.3	B				
	10000000						
 moderate > 15-33 (Beaufort 4 - Beaufort 7) 	fast	0.3	В				
	mod	0.4	В				
	slow	0.6	В				
- severe > 33 - 48	1000						
(> Beautort / - Beautort 9)	fast	0.5	в				
	nod	0.7	D				
(c) Prevailing cross current (knots)	510W	1.1	Ь				
- negligible < 0.2	a11	0.0	0.0				
- 1ow 0.2 - 0.5	fast	0.2 B	0.1	в			
	mod	0.25 B	0.2	в			
	slow	0.3 B	0.3	в			
	e	0.5 D	0.4 B				
- moderate > 0.5 - 1.5	Iast	0.5 B					
	slow	10B	0.8	B			
	SIOW	1.0 D	0.0	5			
- strong > 1.5-2.0	fast	1.0 B	1.00				
Contract Contract Contract Contract	mod	1.2 B	1.2 B -				
	slow	1.6 B					
(d) Prevailing longitudinal current (knots) - low ≤ 1.5	a11	0.0					
moderate > 1.5 3	fact	0.0	1				
- modelate - 1.5 - 5	mod	0.1	В				
	slow	0.21	в				
	1201-10045	1000					
- strong > 3	fast	0.1	В				
	mod	0.2	В				
	slow	0.4	в				
(e) Beam and stern quartering wave height Hs (m)	-11	0.0	0.0				
$-1 m \le 1 m$	all	~0.5 B	0.0				
- H.≥ 3 m	all	~10B	355				
(f) Aids to navigation	1						
- excellent with shore traffic control		0.0)				
- good		0.2	в				
-moderate		0.4 B					
(g) Bottom surface		12 					
- if depth ≥ 1.5 T		0.0)				
- if depth < 1.5 T then							
- smooth and soft		0.1 B					
- smooth or sloping and hard		0.1 B 0.2 B					
(b) Depth of waterway		0.2					
- >1.5 T		0.0	>1.5T	0.0B			
- 1.5 T - 1.25T		0.1 B	1.5T-1.15T	0.2B			
- <1.25 T		0.2 B	<1.15T	0.4B			
(i) High cargo hazards	<i></i>	See explanation in box(i)					

Horizontal aspects – Conceptual design

Comparison - 1997 and 2011 versions (1)

Method for estimation of conceptual design channel width:

Required width	1 way channel, w =	$w_{BM} + \sum w_i + w_{Br} + w_{Bg}$
where:	$W_{BM} =$	basic manoeuvring width
	w _i =	additional clearances for straight channel sections
	$W_{Br} =$	bank clearance on port (red) side of channel
	w _{Bg} =	bank clearance on starboard (green) side of channel

2 way channel, $w = 2w_{PM} + 2\sum w_{i} + w_{Pr} + w_{Pr} + w_{Pr}$

Key for comparison between methods

No change
Decrease in width allowance
Increase in width allowance

	350 N		PIANC 1997		1997	PIANO	C 2011	
Width factor	Allowance	Basis	Ship speed	Outer	Inner	Outer	Inner	Notes on comparison between methods
			C L C C	channel	channel	channel	channel	
				exposed to	protected	exposed to	protected	
			5	open water	water	open water	water	
$W_{BM} =$	Basic manoeuvring lane	Good ship manoeuvrability		1.3	1.3	1.3	1.3	No change
		Moderate ship manoeuvrability		1.5	1.5	1.5	1.5	
		Poor ship manoeuvrability		1.8	1.8	1.8	1.8	
$W_{Br} = W_{Bg} =$	Bank clearance	Gentle underwater channel slope (1:10 or	Fast			0.2	0.2	Additional category for "gentle" channel slope
		less steep)	Moderate			0.1	0.1	
		A POLICE A	Slow			0	0	
		Sloping channel edges and shoals	Fast	0.7	-	0.7	0.7	Values added for fast speed in inner channel
			Moderate	0.5	0.5	0.5	0.5	
			Slow	0.3	0.3	0.3	0.3	
		Steep and hard embankments, structures	Fast	1.3	-	1.3	1.3	
			Moderate	1	1	1	1	
			Slow	0.5	0.5	0.5	0.5	
W _i =	Allowance for vessel	Fast (> 12 knots)		0.1	0.1	0.1	0.1	No change
	speed	Moderate (8-12 knots)		0	0	0	0	
	1011	Slow (5-8 knots)		0	0	0	0	
	Prevailing cross wind	Mild (= 15 knots)</td <td>Fast</td> <td>0</td> <td>0</td> <td>0.1</td> <td>0.1</td> <td>Values now given for mild wind conditions, with</td>	Fast	0	0	0.1	0.1	Values now given for mild wind conditions, with
	22.2	C1 10	Moderate	0	0	0.2	0.2	mainly increases elsewhere but with reductions at
			Slow	0	0	0.3	0.3	severe wind conditions for fast and moderate
		Moderate (15-33 knots)	Fast	0.3	-	0.3	0.3	vessel speeds
			Moderate	0.4	0.4	0.4	0.4	
			Slow	0.5	0.5	0.6	0.6	
		Severe (33-48 knots)	Fast	0.6	-	0.5	0.5	
		and a second second second of the second	Moderate	0.8	0.8	0.7	0.7	
			Slow	1	1	1.1	1.1	

Horizontal aspects – Conceptual design

Comparison - 1997 and 2011 versions (2)

Prevailing cross current	Negligible (<0.2 knots)	All	0	0	0	0	Increased values for most conditions
	Low (0.2-0.5 knots)	Fast	0.1	1 .	0.2	0.1	
	~ ~	Moderate	0.2	0.1	0.25	0.2	
		Slow	0.3	0.2	0.3	0.3	
	Moderate (0.5- 1.5 knots)	Fast	0.5	1 - 31	0.5	0.4	
	and a construction of the 2 states and a second states of the	Moderate	0.7	0.5	0.7	0.6	
		Slow	1	0.8	1	0.8	
	Strong (1.5-2 knots)	Fast	0.7	6407	1	1241	
	dide the set of head set of the	Moderate	1	(<u>4</u>)7	1.2	1245	
		Slow	1.3	1	1.6		
Prevailing longitudinal	Low (= 1.5 knots)</td <td>All</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Values included for inner channel where not</td>	All	0	0	0	0	Values included for inner channel where not
current	Moderate (1.5-3 knots)	Fast	0	0705	0	0	provided previously
	LICENCE ROLE ROLE STATE ON D	Moderate	0.1	0.1	0.1	0.1	- 55
		Slow	0.2	0.2	0.2	0.2	
	Strong (> 3 knots)	Fast	0.1		0.1	0.1	
	575 B86 56751	Moderate	0.2	0.2	0.2	0.2	
		Slow	0.4	0.4	0.4	0.4	
Allowance for wave	$Hs \leq 1 m and WL \leq L$	All	0	0	0	0	Revised values with indication given regarding
action	Hs = 1-3m and $WL = L$	Fast	2	1 - 31	~0.5	-	wave direction, as beam waves may affect the
	Constraint the advances addressed by the areas	Moderate	1	9 0 0	~0.5	1 4 0	drift of the vessel
		Slow	0.5	3 4 33	~0.5	141	
	Hs > 3m and $WL > L$	Fast	3	340	~1.0	1 4 3	
		Moderate	2.2	6407	~1.0	1281	
		Slow	1.5	6407	~1.0	9 <u>11</u> 83	
Provision of navigation	Excellent with shore traffic control		0	0	0	0	Doubled width requirements, as defined in
aids	Good		0.1	0.1	0.2	0.2	explanitory notes
	Moderate with infrequent poor visibility		0.2	0.2	0.4	0.4	17 97%
	Moderate with frequent poor visibility		>/= 0.5	>/= 0.5		1000.00 M	
Allowance for bottom	If depth $> = 1.5T$		0	0	0	0	No change
surface type	If depth $< 1.5T$ - smooth and soft bottom		0.1	0.1	0.1	0.1	
	- smooth or sloping and hard	1	0.1	0.1	0.1	0.1	
	- rough and hard	1	0.2	0.2	0.2	0.2	
Allowance for channel	Depth >/= 1.5T		0	0	0	0	No change but criteria altered to:
depth	Depth 1.5T - 1.25T		0.1	0.2	0.1	0.2	1.5T - 1.15T
101	Depth < 1.25T	2	0.2	0.4	0.2	0.4	<1.15T
Allowance for hazardous	Low		0	0.0			In general no additional width now required for
cargo	Medium		0.5	0.4			dangerous cargoes, as does not affect navigation,
	High		1	0.8			but risk assessment required

Page 1

Horizontal aspects – Conceptual design

Comparison - 1997 and 2011 versions (3)

W _p =	Additional for two way t	raffic					
	Allowance for vessel	Fast (> 12 knots)	2	-	2	1.8	Value added for fast speed in inner channel
	speed	Moderate (8-12 knots)	1.6	1.4	1.6	1.4	
		Slow (5-8 knots)	1.2	1	1.2	1	
	Encounter traffic density	Light	0	0	ti jî		Heavy traffic classified as 3 design vessels per
		Moderate	0.2	0.2			day
		Heavy	0.5	0.4	0.5	0.5	85

Other aspects covering

- Aids to navigation (Chapter 4) Defer to IALA
- Risk management and analysis (Chapter 5)
- Training issues (Chapter 5)
- Operational rules and limits (Chapter 5)
- Winter navigation and channel design (Chapter 5)
- Environmental issues (Chapter 5)

PIANC Working Group 49

Production

- 80% draft presented to and reviewed by MarCom - 2013
- Some final drafting undertaken
- Took account of MarCom comments
- Final review by IAPH, IMPA,
 IALA and MarCom
- Now published January 2014

HARBOUR APPROACH CHANNELS DESIGN GUIDELINES

The World Association for Waterborne Transport Infrastructure

Approach Channels – A Guide for Design